
ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem A. Jumbled Compass
Input file: stdin

Output file: stdout

Time limit: 1 second

Jonas is developing the JUxtaPhone and is tasked with animating the compass needle. The API is simple:
the compass needle is currently in some direction (between 0 and 359 degrees, with north being 0, east
being 90), and is being animated by giving the degrees to spin it. If the needle is pointing north, and you
give the compass an input of 90, it will spin clockwise (positive numbers mean clockwise direction) to
stop at east, whereas an input of �45 would spin it counterclockwise to stop at north west.

The compass gives the current direction the phone is pointing and Jonas’ task is to animate the needle
taking the shortest path from the current needle direction to the correct direction. Many ifs, moduli, and
even an arctan later, he is still not convinced his minimumDistance function is correct; he calls you on
the phone.

Input
The first line of input contains an integer n1(0  n1  359), the current direction of the needle. The
second line of input contains an integer n2(0  n2  359), the correct direction of the needle.

Output
Output the change in direction that would make the needle spin the shortest distance from n1 to n2.
A positive change indicates spinning the needle clockwise, and a negative change indicates spinning the
needle counter-clockwise. If the two input numbers are diametrically opposed, the needle should travel
clockwise. I.e., in this case, output 180 rather than �180.

Examples
stdin stdout

315

45

90

180

270

90

45

270

-135

Page 1 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem B. Game Rank
Input file: stdin

Output file: stdout

Time limit: 1 second

The gaming company Sandstorm is developing an online two player game. You have been asked to
implement the ranking system. All players have a rank determining their playing strength which gets
updated after every game played. There are 25 regular ranks, and an extra rank, “Legend”, above that.
The ranks are numbered in decreasing order, 25 being the lowest rank, 1 the second highest rank, and
Legend the highest rank.

Each rank has a certain number of “stars” that one needs to gain before advancing to the next rank. If a
player wins a game, she gains a star. If before the game the player was on rank 6�25, and this was the
third or more consecutive win, she gains an additional bonus star for that win. When she has all the stars
for her rank (see list below) and gains another star, she will instead gain one rank and have one star on
the new rank.

For instance, if before a winning game the player had all the stars on her current rank, she will after the
game have gained one rank and have 1 or 2 stars (depending on whether she got a bonus star) on the new
rank. If on the other hand she had all stars except one on a rank, and won a game that also gave her a
bonus star, she would gain one rank and have 1 star on the new rank.

If a player on rank 1�20 loses a game, she loses a star. If a player has zero stars on a rank and loses a
star, she will lose a rank and have all stars minus one on the rank below. However, one can never drop
below rank 20 (losing a game at rank 20 with no stars will have no effect).

If a player reaches the Legend rank, she will stay legend no matter how many losses she incurs afterwards.

The number of stars on each rank are as follows:

• Rank 25�21: 2 stars

• Rank 20�16: 3 stars

• Rank 15�11: 4 stars

• Rank 10�1: 5 stars

A player starts at rank 25 with no stars. Given the match history of a player, what is her rank at the end
of the sequence of matches?

Input
The input consists of a single line describing the sequence of matches. Each character corresponds to
one game; ‘W’ represents a win and ‘L’ a loss. The length of the line is between 1 and 10, 000 characters
(inclusive).

Output
Output a single line containing a rank after having played the given sequence of games; either an integer
between 1 and 25 or “Legend”.

Page 2 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Examples
stdin stdout

WW 25

WWW 24

WWWW 23

WLWLWLWL 24

WWWWWWWWWLLWW 19

WWWWWWWWWLWWL 18

Page 3 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem C. Islands
Input file: stdin

Output file: stdout

Time limit: 2 seconds

You are mapping a faraway planet using a satellite. The planet’s surface can be modeled as a grid. The
satellite has captured an image of the surface. Each grid square is either land (denoted as ‘L’), water
(denoted as ‘W’), or covered by clouds (denoted as ‘C’). Clouds mean that the surface could either be land
or water; you cannot tell.

An island is a region of land where every grid cell in the island is connected to every other by some path,
and every leg of the path only goes up, down, left or right. Given an image, determine the minimum
number of islands that is consistent with the given image.

Input
The first line of input contains two integers, r and c (1  r, c  50), which are the number of rows and
the number of columns of the image. The next r lines will each contain exactly c characters, consisting
only of ‘L’ (representing Land), ‘W’ (representing Water), and ‘C’ (representing Clouds).

Output
Output a single integer, which is the minimum number of islands possible.

Examples
stdin stdout

4 5

CCCCC

CCCCC

CCCCC

CCCCC

0

3 2

LW

CC

WL

1

Page 4 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem D. Bless You Autocorrect!
Input file: stdin

Output file: stdout

Time limit: 2 seconds

Typing on phones can be tedious. It is easy to make typing mistakes, which is why most phones come
with an autocorrect feature. Autocorrect not only fixes common typos, but also suggests how to finish the
word while you type it. Jenny has recently been pondering how she can use this feature to her advantage,
so that she can send a particular message with the minimum amount of typing.

The autocorrect feature on Jenny’s phone works like this: the phone has an internal dictionary of words
sorted by their frequency in the English language. Whenever a word is being typed, autocorrect suggests
the most common word (if any) starting with all the letters typed so far. By pressing tab, the word being
typed is completed with the autocorrect suggestion. Autocorrect can only be used after the first character
of a word has been typed � it is not possible to press tab before having typed anything. If no dictionary
word starts with the letters typed so far, pressing tab has no effect.

Jenny has recently noticed that it is sometimes possible to use autocorrect to her advantage even when it
is not suggesting the correct word, by deleting the end of the autocorrected word. For instance, to type the
word “autocorrelation”, Jenny starts typing “aut”, which then autocorrects to “autocorrect” (because
it is such a common word these days!) when pressing tab. By deleting the last two characters (“ct”) and
then typing the six letters “lation”, the whole word can be typed using only 3 (“aut”) + 1 (tab) + 2
(backspace twice) + 6 (“lation”) = 12 keystrokes, 3 fewer than typing “autocorrelation” without using
autocorrect.

Given the dictionary on the phone and the words Jenny wants to type, output the minimum number of
keystrokes required to type each word. The only keys Jenny can use are the letter keys, tab and backspace.

Input
The first line of input contains two positive integers n (1  n  105), the number of words in the
dictionary, and m (1  m  105), the number of words to type. Then follow n lines with one word per
line, sorted in decreasing order of how common the word is (the first word is the most common). No word
appears twice in the dictionary. Then follow m lines, containing the words to type.

The dictionary and the words to type only use lower case letters ‘a’-‘z’. The total size of the input file is
at most 1 MB.

Output
For each word to type, output a line containing the minimum number of keystrokes required to type the
corresponding word.

Page 5 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Examples
stdin stdout

5 5

austria

autocorrect

program

programming

computer

autocorrelation

programming

competition

zyx

austria

12

4

11

3

2

5 3

yogurt

you

blessing

auto

correct

bless

you

autocorrect

5

3

9

Page 6 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem E. Paint
Input file: stdin

Output file: stdout

Time limit: 2 seconds

You are painting a picket fence with n slats, numbered from 1 to n. There are k painters willing to paint
a specific portion of the fence. However, they don’t like each other, and each painter will only paint their
given portion of the fence if no other painter overlaps their portion.

You want to select a subset of painters that do not conflict with each other, in order to minimize the
number of unpainted slats. For example, suppose there are 8 slats, and 3 painters. One painter wants to
paint slats 1 ! 3, one wants to paint 2 ! 6, and one wants to paint 5 ! 8. By choosing the first and last
painters, you can paint most of the slats, leaving only a single slat (slat 4) unpainted, with no overlap
between painters.

Input
The first line of input contains two integers n (1  n  1018) and k (1  k  200, 000), where n is the
number of slats and k is the number of painters. Each of the next k lines contains two integers a and b

(1  a  b  n), indicating that this painter wants to paint all of the slats between a and b, inclusive.

Output
Output a single integer, which is the smallest number of slats that go unpainted with an optimal selection
of painters

Examples
stdin stdout

8 3

1 3

2 6

5 8

1

Page 7 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem F. Exponial
Input file: stdin

Output file: stdout

Time limit: 2 seconds

Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are
many ways of constructing really big numbers known to humankind, for instance:

• Exponentiation: 422016 = 42 · 42 · . . . · 42, 2016 times.

• Factorials: 2016! = 2016 · 2015 · . . . · 2 · 1.

In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all
positive integers n as

exponial(n) = n

(n�1)(n�2)...
21

For example, exponial(1) = 1 and exponial(5) = 54
32

1

= 6.206 · 10183230 which is already pretty big. Note
that exponentiation is right-associative: abc = a

(bc).

Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you
to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by
m).

Input
The input consists of two integers n (1  n  109) and m (1  m  109).

Output
Output a single integer, the value of exponial(n) mod m.

Examples
stdin stdout

2 42 2

5 123456789 16317634

94 265 39

Page 8 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem G. Artwork
Input file: stdin

Output file: stdout

Time limit: 5 seconds

A template for an artwork is a white grid of n ⇥ m squares. The artwork will be created by painting q

horizontal and vertical black strokes. A stroke starts from square (x1, y1), ends at square (x2, y2) (x1 = x2

or y1 = y2) and changes the color of all squares (x, y) to black where x1  x  x2 and y1  y  y2.

The beauty of an artwork is the number of regions in the grid. Each region consists of one or more white
squares that are connected to each other using a path of white squares in the grid, walking horizontally or
vertically but not diagonally. The initial beauty of the artwork is 1. Your task is to calculate the beauty
after each new stroke. The following figure illustrates how the beauty of the artwork varies in Sample
Input 1.

Input
The first line of input contains three integers n, m and q (1  n,m  1000, 1  q  104).
Then follow q lines that describe the strokes. Each line consists of four integers x1, y1, x2 and y2
(1  x1  x2  n, 1  y1  y2  m). Either x1 = x2 or y1 = y2 (or both).

Output
For each of the q strokes, output a line containing the beauty of the artwork after the stroke.

Examples
stdin stdout

4 6 5

2 2 2 6

1 3 4 3

2 5 3 5

4 6 4 6

1 6 4 6

1

3

3

4

3

Page 9 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem H. Card Hand Sorting
Input file: stdin

Output file: stdout

Time limit: 1 second

When dealt cards in the card game Plump it is a good idea to start by sorting the cards in hand by suit
and rank. The different suits should be grouped and the ranks should be sorted within each suit. But
the order of the suits does not matter and within each suit, the cards may be sorted in either ascending
or descending order on rank. It is allowed for some suits to be sorted in ascending order and others in
descending order.

Sorting is done by moving one card at a time from its current position to a new position in the hand, at
the start, end, or in between two adjacent cards. What is the smallest number of moves required to sort
a given hand of cards?

Input
The first line of input contains an integer n (1  n  52), the number of cards in the hand. The second line
contains n pairwise distinct space-separated cards, each represented by two characters. The first character
of a card represents the rank and is either a digit from 2 to 9 or one of the letters T, J, Q, K, and A

representing Ten, Jack, Queen, King and Ace, respectively, given here in increasing order. The second
character of a card is from the set {s, h, d, c} representing the suits spades, hearts, diamonds, and
clubs.

Output
Output the minimum number of card moves required to sort the hand as described above.

Examples
stdin stdout

4

2h Th 8c Qh

1

7

9d As 2s Qd 2c Jd 8h

2

4

2h 3h 9c 8c

0

Page 10 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem I. Illumination
Input file: stdin

Output file: stdout

Time limit: 5 seconds

Consider a square grid with lamps in fixed locations. Each lamp can either illuminate its row or its column,
but not both. The illumination of each lamp extends over a limited distance.

Any square in the grid should only be illuminated by at most one lamp in its row and by at most one
lamp in its column (one of each is acceptable, as is just the row, just the column, or neither). Determine
if it is possible for all lamps to be lit while satisfying these constraints.

Input
The first line of input contains three positive integers, n, r and k (1  n, r, k  1, 000, k  n⇥ n), where
n is the size of one side of the square grid, r is the maximum reach of a lamp, and k is the number of
lamps. The next k lines will each contain two positive integers i and j (1  i, j  n), indicating that there
is a lamp in the grid at row i, column j.

Each lamp can illuminate squares at most r units away, and can also illuminate its own square, so the
maximum number of squares it can illuminate is 2r + 1. All lamps will be in distinct locations.

Output
Output a single integer, 1 if it is possible to light all of the lamps and 0 if it is not possible.

Examples
stdin stdout

3 2 5

1 1

1 3

3 1

3 3

2 2

1

3 2 6

1 1

1 2

1 3

3 1

3 2

3 3

0

Page 11 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem J. InTents
Input file: stdin

Output file: stdout

Time limit: 5 seconds

A circus is constructing their tent. The tent is a large piece of canvas held up by a given number of various
length tent poles. The tent poles go in specific places on the ground, but which tent pole goes in which
place is up to you. You need to choose a placement for the given tent poles that maximizes the total
volume under the tent.

There will always be one central pole at the origin; the other poles are distributed around the periphery.
The tent is always drawn tight between the central pole and two adjacent poles on the periphery, forming
a perfect triangle. Only the volume under these triangles formed by two adjacent outer poles and the
central origin pole counts towards the total volume. Adjacency is by angle around the origin.

Input
Each input will consist of a single test case. Note that your program may be run multiple times on different
inputs. The first line of input contains an integer n (3  n  30), which is the number of poles.

The next n � 1 lines each contains two integers x and y (�1, 000  x, y  1, 000), representing a 2D
coordinate, giving the locations where the poles may be placed. The locations may not be in order around
the origin. After that, there will be n lines, each containing a single integer h (1  h  100). These are
the heights of the poles.

One pole must be placed at the origin, and the rest must be placed at the (x, y) coordinates in the input.
The (x, y) locations will surround the origin; that is, the polygon formed by the (x, y) locations, in order
(by angle around the origin), will strictly include the origin. No two holes will be at the same angle with
the origin (i.e. no triangle of roof fabric will have area 0).

Output
Output a single floating point number, which is the maximum volume achievable under the tent. Output
this number to exactly two decimal places, rounded.

Examples
stdin stdout

5

100 100

-200 -200

300 -300

-400 400

30

20

50

60

10

8566666.67

Page 12 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem K. Water
Input file: stdin

Output file: stdout

Time limit: 5 seconds

A water company is trying to provide water from its pumping station to a mansion. The company owns
n water stations, numbered 1 . . . n, which are connected by a variety of pipes. Water can flow through
both directions of a pipe, but the total amount of water that can flow through the pipe is bounded by
the capacity of the pipe.

The water company is constantly improving the pipes, increasing the capacity of various pipes. The water
company is conducting k improvements (each of which is permanent after it is executed). An improvement
consists of taking a pipe between two locations and increasing its capacity by a fixed amount, or installing
a pipe between two locations which are not directly connected by a pipe.

After each improvement, the water company wants to know the maximum amount of water the mansion
could receive.

Input

The first line of input contains three integers, n (2  n  100), p (0  p  n(n�1)
2 ), and k (1  k  10, 000),

where n is the number of stations, p is the number of initial pipes, and k is the number of improvements.
The first station in the list is always the pumping station, and the second is always the mansion.

The next p lines will describe the pipes in the initial setup. The lines will each contain three integers, a,
b (1  a < b  n) and c (1  c  1, 000), which indicates that stations a and b are connected by a pipe
with capacity c. No (a, b) pair will appear more than once in this section.

The next k lines will describe the improvements. The lines will each contain three integers, a, b

(1  a < b  n) and c (1  c  1, 000), which indicates that the pipe connecting stations a and b

has its capacity increased by c (if there is currently no pipe between a and b, then one is created with
capacity c). Note that it is possible for an (a, b) pair to be repeated in this section.

Output
Output k+1 integers, each on its own line, describing the maximum amount of water that can reach the
mansion. The first number is the amount of water reaching the mansion in the initial configuration. The
next k numbers are the amounts of water reaching the mansion after each improvement.

Page 13 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Examples
stdin stdout

3 2 1

1 3 10

2 3 1

2 3 15

1

10

6 10 2

1 3 2

1 4 6

1 5 1

3 5 8

4 5 7

2 4 3

2 5 4

2 6 1

5 6 9

3 6 5

2 6 9

1 6 3

8

9

12

Page 14 of 15



ACM International Collegiate Programming Contest 2017

University of Illinois at Urbana-Champaign Tryout #1, Saturday, September 23, 2017

Problem L. Barbells
Input file: stdin

Output file: stdout

Time limit: 1 second

Your local gym has b bars and p plates for barbells. In order to prepare a weight for lifting, you must
choose a single bar, which has two sides. You then load each side with a (possibly empty) set of plates. For
safety reasons, the plates on each side must balance; they must sum to the same weight. The combination
of plates on either side might be different, but the total weight on either side must be the same. What
weights are available for lifting?

Input
The first line of input contains two integers, b and p (1  b, p  14), representing the number of bars and
plates. Then, there are b lines each containing a single integer x (1  x  108) which are the weights
of the bars. After that, there are p lines each containing a single integer y (1  y  108) which are the
weights of the plates.

Output
Output a sorted list of all possible lifting weights, one per line. There must be no duplicates.

Examples
stdin stdout

2 5

100

110

5

5

1

4

6

100

110

112

120

122

130

Page 15 of 15


